Bio-inspired computational heuristics to study Lane–Emden systems arising in astrophysics model

نویسندگان

  • Iftikhar Ahmad
  • Muhammad Asif Zahoor Raja
  • Muhammad Bilal
  • Farooq Ashraf
چکیده

This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives

In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...

متن کامل

Application of the exact operational matrices for solving the Emden-Fowler equations, arising in ‎Astrophysics‎

The objective of this paper is applying the well-known exact operational matrices (EOMs) idea for solving the Emden-Fowler equations, illustrating the superiority of EOMs over ordinary operational matrices (OOMs). Up to now, a few studies have been conducted on EOMs ; but the solved differential equations did not have high-degree nonlinearity and the reported results could not strongly show the...

متن کامل

Chebyshev finite difference method for solving a mathematical model arising in wastewater treatment plants

The Chebyshev finite difference method is applied to solve a system of two coupled nonlinear Lane-Emden differential equations arising in mathematical modelling of the excess sludge production from wastewater treatment plants. This method is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. The approach consists of reducing the ...

متن کامل

Solving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks

In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...

متن کامل

Numerical Solution of the Lane-Emden Equation Based on DE Transformation via Sinc Collocation Method

In this paper‎, ‎numerical solution of‎ ‎general Lane-Emden equation via collocation method based on‎ ‎Double Exponential DE transformation is considered‎. ‎The‎ ‎method converts equation to the nonlinear Volterra integral‎ ‎equation‎. ‎Numerical examples show the accuracy of the method.‎ ‎Also‎, ‎some remarks with respect to run-time‎, computational cost‎ ‎and implementation are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016